
Journal of Statistical Physics, Vot. 1, No. 3, 1969 

Entropy and Irreversibility 
in a Dilute Gas of Hard Disks 
J. Orban 1'~ and A. Bel lemans 1'~ 

Received September 2, 1969; revised October 7, 1969 

The partition of the canonical entropy (invariant of motion) into a thermodynamic 
part Sin and a nonthermodynamic one Snonth, respectively increasing and decreasing 
functions of time for a system approaching equilibrium, was proposed by Prigogine 
and co-workers. This viewpoint is critically examined in the special case of an initially 
uncorrelated gas of hard disks. Both Sth and the leading term of Shoran are evaluated 
for finite assemblies of 400, 1600, and 6400 disks, by the method of molecular dynamics. 
There is good evidence that, in the limit of an infinite system, the Prigogine scheme is 
verified. 

KEY WORDS: entropy; irreversibility; method of molecular dynamics; gas of hard 
disks; H-function of Boltzmann. 

1. I N T R O D U C T I O N  

Cons ider  a classical m o n a t o m i c  fluid o f  N molecules,  character ized by  their  pos i t ions  
r (N) and  velocities v oN), and  let f / b e  the densi ty funct ion o f  this system in phase space, 
normal ized  to uni ty  

f f N ( r  (m, V<m; t) = dr<N) dv<m 1 

The canonical entropy,  defined in terms o f f N ,  is given by 

Sean/k = --  f f N  InfN dr<N) dv<m (1) 

a p a r t  f rom an addi t ive  constant .  
The en t ropy  funct ion so defined is strictly an invar ian t  o f  the mo t ion  o f  the 

system, as a consequence o f  Liouvi l le ' s  theorem,  dfN/dt =- O, and  therefore  is in 
con t rad ic t ion  with the t he rmodynamic  defini t ion o f  ent ropy,  which states that ,  for  
an  i so la ted  system, this funct ion increases mono ton ica l ly  with time. 

z Center for Statistical Mechanics and Thermodynamics, University of Texas, Austin. 
2 On leave of absence from the University of Brussels, Belgium. 
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The resolution of this paradox, according to Prigogine and co-workers (see 
Ref. 1), is to be found in the fact that the thermodynamic entropy, hereafter denoted 
as S,h, is a function distinct from Scan (except for a system at thermodynamic equili- 
brium, for which f u  would be given exactly by the Boltzmann distribution; only in 
this particular situation do we have the equality St~ = Scan) .  Indeed, Sth is an experi- 
mentally measurable quantity, and, as such, must be defined in terms of observables 
only, i.e., reduced distribution functions relative to small subsets of molecules, and 
not in terms of fN, which obviously is unaccessible experimentally. Following this 
viewpoint, Sth is only a part of Scan, which may, accordingly, be rewritten as 

Scan = Sth + Snonth (2) 

In this scheme, the nonthermodynamic entropy Snonth must decrease with time, exactly 
at the same rate as Stn increases, in order to insure the steadiness of S c a n  �9 

Actually, the increase of Sth with time constitutes a problem in itself because of 
the mechanical reversibility (paradox of Loschmidt). Indeed, if we find a system with 
such positions and velocities that St:: increases, then, by reversing all velocities, we 
can (in principle, at least) design a system where Sth decreases. This difficulty was 
carefully analyzed by Prigogine and R6sibois (~) and Balescu, (~) who pointed out the 
role of the initial correlations existing in the system: according to these, the evolution 
may be kinetic (increase of Sth) or antikinetic (decrease of Sth)2 They also showed 
that the spontaneous correlations which are progressively created by molecular inter- 
actions in an initially uncorrelated system determine a kinetic evolution (Sth increases) 
persisting for a duration of the order of Poincar6's time, i.e., much larger than any 
time interval corresponding to an experiment. 

If we now start from an initially uncorrelated system, collisional processes will 
create intricate correlations between positions and velocities after a short time interval. 
As the time proceeds, the low-order distribution functions, as well as the thermo- 
dynamic entropy, approach their equilibrium values; in the meantime, correlations 
involving higher and higher distribution functions are created through collisions, 
giving rise to a decrease of Snonth �9 

The purpose of this paper is to illustrate this behavior of entropy in the case of a 
dilute gas by the method of molecular dynamics 4 (simulation on a computer) which, 
for finite systems, provides us with a complete knowledge of all positions and velocities 
at any instant, and consequently allows the computation of both S~h and Snonth. For 
the sake of simplicity, we shall work on a two-dimensional gas of hard disks. 

2. F O R H U L A T I O N  O F  Sth A N D  Snont h FOR A D I L U T E  GAS 
O F  H A R D  DISKS 

Consider a highly dilute gas, so that, from the macroscopic point of view, the 
one-molecule distribution function f:(r, v; t), defined as 

f: = f fN drIN-x) dr(N-l) (3)  

These two kinds of behavior have been reproduced on a computer for a dilute gas of hard disks, m 
The method was initiated by Alder and Wainwright. ~> 
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is the only relevant function for describing the system. Its thermodynamic entropy is 
therefore identified to the H-function of Boltzmann with reversed sign, i.e., 

&h/Nk = -- f fz lnf~ dr dv (4) 

Note thatf~ and all other reduced distribution functions to be introduced later on are 
normalized to unity. 

The nonthermodynamic entropy is defined as the remainder between Scan and 
Sth , i.e., 

Snontn/Nk = -- (l/N) f fN ln fN dr 'N, dv 'N, + f f l  In fl  dr dv (5) 

Following Prigogine, we decompose lnfu into a sum of terms involving lower-order 
distribution functions f~ ,fs ,)ca ,... in the following way 

lnfN = Z lnA(i) + Z Z  ln[A(i, j)/f~(i)A(j)] 
i i < 5  

+ • s  ln[A( i, J, k)A(i)A(j)A(k)/f2(i, j)A(i, k)A(j, k)l 
i < j < k  

+ ... (6) 

where i stands for the position and velocity of molecule i. We then get, from (5) and (6), 

where 

Snont~/Nk = --Ks -- Ka -- K~ . . . .  (7) 

Ks -- N -- 1 l-  f~(1, 2) d(1) d(2) 
2 f fs(1, 2) n .f~7~-f~) (8) 

and higher Ks are given by similar formulas. 
Let us now apply (8) to a two-dimensional gas of hard disks with diameter D. The 

pair distribution functionfs(1, 2) vanishes for rzs < D. On the other hand, for r~s > D, 
the correlation 

[]~(1, 2) -- A(1) f~(2)]/f~(1) f~(2) 

is expected to remain small compared to unity, because of the low density of the 
system. Hence, expanding the logarithmic term of (8) up to the second order, we get 

K2 ~ �89 -- 1) f,'l~>D [fs(l '  2) -- f~(1)f~(2)] d(1) d(2) 

+ ~-(N -- 1) f~z~>D {[f2(1, 2) --f~(1)ft(2)]S/[f~(1)fz(2)]} d(1) d(2) 

For  a spatially homogeneous gas, the first term is simply equal to ~DS/V, where V is 
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the volume of the system. This constant term will be conventionally dropped, so that 
K2 will subsequently be defined as 

K., ~ ~N f~l~>O [A(1, 2) - f~(1)f~(2)]2/[f~(1)f~(2)] d(1) d(2) (9) 

This expression, which is positive-definite, becomes negligibly small botla for an 
uncorrelated system [i.e., J~(1, 2) ~ fl(1)fl(2)] and for a dilute system at equilibrium. 
This, however, does not imply that this term remains negligible in all circumstances. 
On the contrary, if we start at time 0 f rom a totally uncorrelated system, we expect, 
after a while, the appearance of complicated correlations between pairs of  molecules 
on account of  two-body collisions, so that Kz will increase and become significantly 
different f rom zero. As the time proceeds, correlations involving larger and larger 
sets of  molecules will appear in the system. In the meantime, the pair correlations 
initially created will progressively decrease to reach ultimately their equilibrium 
value, which is nearly zero for a dilute gas. This means that K 2 is expected to pass 
through a maximum and then to decrease again to a vanishingly small value. 

As /<3 , / (4  .... are defined by integrals similar to (9), their behavior as functions 
of  time will be qualitatively the same as for K~. However, the time scales will obviously 
be different. Roughly speaking, if T is the mean free time between collisions, then Kz 
should reach its maximum value around t = ~- and fall back again to zero for t ~ 2r; 
similarly, Ks, which is associated with triplet correlations and is zero at t = 0, should 
go through a maximum at t ~ 2z and return to zero near t ~ 3~-, and so on. 

Scan/Nk 

Snon-th/Nk 

Fig. 1. 

0 t 

Schematic representation of the expected behavior of K2, /(3, K4 ,..., Sth, and Snonth 
versus time. 
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In the meantime, of course, the singlet distribution function f~ approaches its 
equilibrium value, and Sth increases regularly with time. The corresponding decrease 
of  Snonth, ensuring the invariance of  Scan, results from the accumulation of  
K2 , / (3 , / (4  ,... as shown schematically in Fig. 1 (for a system which is totally un- 
correlated at time 0). Each Kn component of  Snonth starts from a zero value, increases 
and passes through a maximum as the time proceeds, then decays, and eventually 
reaches a very small equilibrium value. The sum of all K,~ is, nevertheless, finite and 
such that, at any instant, the constancy of Scan = S t h  -~- Snomh iS ensured. 

3. N U M E R I C A L  C O M P U T A T I O N S  O F  fl , f z ,  Sth, A N D  K 2 
F O R  F I N I T E  A S S E M B L I E S  O F  H A R D  D I S K S  

The purpose of this paper is to see how far the picture of  the preceding section 
corresponds to the actual behavior of the system. We therefore study the evolution of 
various finite assemblies of hard disks (N----- 400, 1600, and 6400) on a computer, 5 
starting from an initially uncorrelated state and calculating f l  , f2 ,  Sth, and/s at 
regular time intervals. 

The dynamics of a system of hard disks can be described very simply; it has been 
done many times in the literature, so that we shall not expound it here (see, e.g., 
Ref. 6). Let us only mention that we place the N molecules in a square box with 
periodic boundaries. For  definiteness, let us take both the diameter D and the mean 
square velocity @2) of the disks as unity. It then follows that, for a density p = N/V, 
the pressure p, the mean free path, and the mean collision frequency of a molecule 
(in the limit p ~ 0) are given by 

p/pkT = 1 ~- @/2)p, </> = I/(p ~/8), <v> = p<v> ~/g 

where the mean velocity <v> equals �89 We choose p = 0.04, so that the gas is 
nearly perfect (p/pkT ~ 1.063). This gives 

<l> ~ 8.84, <v> ~ 0.1002 

Note that, for the three cases considered, N = 400, 1600, and 6400, the side of  the 
box equals 100, 200, and 400 respectively, and is always much larger than <l>. 

The initial state is chosen as follows: (a) All velocities have the same absolute 
value (v = 1), but are randomly oriented, so that <v) =- 0. (b) The molecules are 
distributed at random in the box, apart fi'Oln the fact that the distance between any 
pair is greater than 1.6 Under these conditions, the system is homogeneous, isotropic, 
and totally uncorrelated at time 0. As the time proceeds, correlations appear and the 

The present research was started at the University of Brussels on an IBM 7040 (16K). All calcula- 
tions reported here were made on the CDC 6600 of the University of Texas, Austin. 

G In this way, the radial distribution function is (on the average) equal to one for rz2 > 1 and/s is 
effectively equal to zero initially. 
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Fig. 2. 

1 v ' ~ 2  

Definition of the variables rz~, vl, v2, 010 and 02 determining f~ for a homogeneous 
isotropic system. 

velocity distribution is progressively driven to the Maxwellian form, but the system 
remains homogeneous and isotropic, so thatf~ and f2 may be written as follows 

A(r, v; t) = ( l / v )  ~l(v; t) 

f2(rl, rs,  vz, vs ; t) ~ (I/V s) ~v2(r~2, vz, v2,01,02 ; t) 

(For the definition of the angles 01 and 0s, see Fig. 2.) 
The evaluation of q~l and Sth is rather straightforward, and a fairly good picture 

of the evolution of S~h toward equilibrium is already obtained with a few hundred 
disks. However, the situation is much less favorable for ~,vs, which involves five molecular 
variables, rls,  v~, vs, 01, and 0 s . A reasonably good sampling of ~s requires several 
thousands of disks at least, which is close to the limit of the possibilities of the com- 
puters presently available. A supplementary difficulty comes from the fact that K2 is 
actually a fluctuation and therefore depends critically on N. At equilibrium and for 
infinite N, it follows from (10) that K2 is zero for a highly dilute system. For N finite, 
however, Ks differs significantly from zero, varying probably as N -1. 

On account of this, an immediate verification of the anticipated behavior of 
Fig. 1 (strictly valid for N--+ oe) is out of question. We give plots of S~h and K2 in 
Fig. 3 for N = 400, 1600, and 6400. The results are totally inconclusive in the two 
first cases, but we nevertheless give them, in order to see the evolution of Ks with N. 
For N = 6400,/s roughly accounts for the expected behavior. Note that, near equili- 
brium,/s fluctuates around 2.0, 0.5, and 0.15 for N = 400, 1600, and 6400 respec- 
tively, and is indeed approximately inversely proportional to N. 

The maximum of K2 is rather unexpectedly located around t ~ 2 or 3 (while, 
from the simple arguments of Section 2, it should occur around t ~ 10). 

4. CONCLUSIONS 

The numerical results for/(2 quoted in the preceding section are certainly not as 
significant as one might hope. Nevertheless, from the data of Fig. 3, it seems almost 
certain that K2 approaches the expected behavior of Fig. 1 in the limit N -+ o% thereby 
supporting the mechanism proposed by Prigogine et al. on theoretical grounds for 
compensating the increase of Sth. Unfortunately extensions of the present calcula- 
tions to larger N values and to higher-order terms (K~, K4 ,...) appear practically 
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Fig. 3. Variation of Sth and/(2 with time for N = 400, 1600, and 6400. (St~ is not shown for 
N = 1600, as the curve is very close to the 6400 one.) At t = 0, S is conventionally put equal to 
zero. (The vertical arrow indicates the mean free time between collisions.) 

u n t r a c t a b l e  fo r  the  t ime  being,  so tha t  the  k ind  o f  " p r o o f "  p re sen ted  here  is necessar i ly  

i ncomple t e .  7 

A C K N O W L E D G M E N T S  

W e  are  m u c h  i n d e b t e d  to P r o f e s s o r  I. P r igog ine  fo r  sugges t ing  this research ,  as 

wel l  as fo r  he lpfu l  discussions.  

7 Obviously, the wiggles in the various/(2 curves could be eliminated by averaging over a number of 
similar runs. The main problem here, however, is to increase N as much as possible in order to 
approach the thermodynamic limit. 
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